ScoDoc/config/softs/pyExcelerator-0.6.3a.patched/pyExcelerator/Bitmap.py

306 lines
12 KiB
Python
Executable File

#!/usr/bin/env python
# -*- coding: windows-1251 -*-
# Copyright (C) 2005 Roman V. Kiseliov
# Portions are Copyright (c) 2004 Evgeny Filatov <fufff@users.sourceforge.net>
# Portions are Copyright (c) 2002-2004 John McNamara (Perl Spreadsheet::WriteExcel)
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# 3. All advertising materials mentioning features or use of this
# software must display the following acknowledgment:
# "This product includes software developed by
# Roman V. Kiseliov <roman@kiseliov.ru>."
#
# 4. Redistributions of any form whatsoever must retain the following
# acknowledgment:
# "This product includes software developed by
# Roman V. Kiseliov <roman@kiseliov.ru>."
#
# THIS SOFTWARE IS PROVIDED BY Roman V. Kiseliov ``AS IS'' AND ANY
# EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Roman V. Kiseliov OR
# ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
# NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
# OF THE POSSIBILITY OF SUCH DAMAGE.
__rev_id__ = """$Id: Bitmap.py,v 1.4 2005/07/20 07:24:11 rvk Exp $"""
from BIFFRecords import BiffRecord
from struct import *
def _size_col(sheet, col):
return sheet.col_width(col)
def _size_row(sheet, row):
return sheet.row_height(row)
def _position_image(sheet, row_start, col_start, x1, y1, width, height):
"""Calculate the vertices that define the position of the image as required by
the OBJ record.
+------------+------------+
| A | B |
+-----+------------+------------+
| |(x1,y1) | |
| 1 |(A1)._______|______ |
| | | | |
| | | | |
+-----+----| BITMAP |-----+
| | | | |
| 2 | |______________. |
| | | (B2)|
| | | (x2,y2)|
+---- +------------+------------+
Example of a bitmap that covers some of the area from cell A1 to cell B2.
Based on the width and height of the bitmap we need to calculate 8 vars:
col_start, row_start, col_end, row_end, x1, y1, x2, y2.
The width and height of the cells are also variable and have to be taken into
account.
The values of col_start and row_start are passed in from the calling
function. The values of col_end and row_end are calculated by subtracting
the width and height of the bitmap from the width and height of the
underlying cells.
The vertices are expressed as a percentage of the underlying cell width as
follows (rhs values are in pixels):
x1 = X / W *1024
y1 = Y / H *256
x2 = (X-1) / W *1024
y2 = (Y-1) / H *256
Where: X is distance from the left side of the underlying cell
Y is distance from the top of the underlying cell
W is the width of the cell
H is the height of the cell
Note: the SDK incorrectly states that the height should be expressed as a
percentage of 1024.
col_start - Col containing upper left corner of object
row_start - Row containing top left corner of object
x1 - Distance to left side of object
y1 - Distance to top of object
width - Width of image frame
height - Height of image frame
"""
# Adjust start column for offsets that are greater than the col width
while x1 >= _size_col(sheet, col_start):
x1 -= _size_col(sheet, col_start)
col_start += 1
# Adjust start row for offsets that are greater than the row height
while y1 >= _size_row(sheet, row_start):
y1 -= _size_row(sheet, row_start)
row_start += 1
# Initialise end cell to the same as the start cell
row_end = row_start # Row containing bottom right corner of object
col_end = col_start # Col containing lower right corner of object
width = width + x1 - 1
height = height + y1 - 1
# Subtract the underlying cell widths to find the end cell of the image
while (width >= _size_col(sheet, col_end)):
width -= _size_col(sheet, col_end)
col_end += 1
# Subtract the underlying cell heights to find the end cell of the image
while (height >= _size_row(sheet, row_end)):
height -= _size_row(sheet, row_end)
row_end += 1
# Bitmap isn't allowed to start or finish in a hidden cell, i.e. a cell
# with zero height or width.
if ((_size_col(sheet, col_start) == 0) or (_size_col(sheet, col_end) == 0)
or (_size_row(sheet, row_start) == 0) or (_size_row(sheet, row_end) == 0)):
return
# Convert the pixel values to the percentage value expected by Excel
x1 = float(x1) / _size_col(sheet, col_start) * 1024
y1 = float(y1) / _size_row(sheet, row_start) * 256
# Distance to right side of object
x2 = float(width) / _size_col(sheet, col_end) * 1024
# Distance to bottom of object
y2 = float(height) / _size_row(sheet, row_end) * 256
return (col_start, x1, row_start, y1, col_end, x2, row_end, y2)
class ObjBmpRecord(BiffRecord):
_REC_ID = 0x005D # Record identifier
def __init__(self, row, col, sheet, im_data_bmp, x, y, scale_x, scale_y):
# Scale the frame of the image.
width = im_data_bmp.width * scale_x
height = im_data_bmp.height * scale_y
# Calculate the vertices of the image and write the OBJ record
col_start, x1, row_start, y1, col_end, x2, row_end, y2 = _position_image(sheet, row, col, x, y, width, height)
"""Store the OBJ record that precedes an IMDATA record. This could be generalise
to support other Excel objects.
"""
cObj = 0x0001 # Count of objects in file (set to 1)
OT = 0x0008 # Object type. 8 = Picture
id = 0x0001 # Object ID
grbit = 0x0614 # Option flags
colL = col_start # Col containing upper left corner of object
dxL = x1 # Distance from left side of cell
rwT = row_start # Row containing top left corner of object
dyT = y1 # Distance from top of cell
colR = col_end # Col containing lower right corner of object
dxR = x2 # Distance from right of cell
rwB = row_end # Row containing bottom right corner of object
dyB = y2 # Distance from bottom of cell
cbMacro = 0x0000 # Length of FMLA structure
Reserved1 = 0x0000 # Reserved
Reserved2 = 0x0000 # Reserved
icvBack = 0x09 # Background colour
icvFore = 0x09 # Foreground colour
fls = 0x00 # Fill pattern
fAuto = 0x00 # Automatic fill
icv = 0x08 # Line colour
lns = 0xff # Line style
lnw = 0x01 # Line weight
fAutoB = 0x00 # Automatic border
frs = 0x0000 # Frame style
cf = 0x0009 # Image format, 9 = bitmap
Reserved3 = 0x0000 # Reserved
cbPictFmla = 0x0000 # Length of FMLA structure
Reserved4 = 0x0000 # Reserved
grbit2 = 0x0001 # Option flags
Reserved5 = 0x0000 # Reserved
data = pack("<L", cObj)
data += pack("<H", OT)
data += pack("<H", id)
data += pack("<H", grbit)
data += pack("<H", colL)
data += pack("<H", dxL)
data += pack("<H", rwT)
data += pack("<H", dyT)
data += pack("<H", colR)
data += pack("<H", dxR)
data += pack("<H", rwB)
data += pack("<H", dyB)
data += pack("<H", cbMacro)
data += pack("<L", Reserved1)
data += pack("<H", Reserved2)
data += pack("<B", icvBack)
data += pack("<B", icvFore)
data += pack("<B", fls)
data += pack("<B", fAuto)
data += pack("<B", icv)
data += pack("<B", lns)
data += pack("<B", lnw)
data += pack("<B", fAutoB)
data += pack("<H", frs)
data += pack("<L", cf)
data += pack("<H", Reserved3)
data += pack("<H", cbPictFmla)
data += pack("<H", Reserved4)
data += pack("<H", grbit2)
data += pack("<L", Reserved5)
self._rec_data = data
def _process_bitmap(bitmap):
"""Convert a 24 bit bitmap into the modified internal format used by Windows.
This is described in BITMAPCOREHEADER and BITMAPCOREINFO structures in the
MSDN library.
"""
# Open file and binmode the data in case the platform needs it.
fh = file(bitmap, "rb")
try:
# Slurp the file into a string.
data = fh.read()
finally:
fh.close()
# Check that the file is big enough to be a bitmap.
if len(data) <= 0x36:
raise Exception("bitmap doesn't contain enough data.")
# The first 2 bytes are used to identify the bitmap.
if (data[:2] != "BM"):
raise Exception("bitmap doesn't appear to to be a valid bitmap image.")
# Remove bitmap data: ID.
data = data[2:]
# Read and remove the bitmap size. This is more reliable than reading
# the data size at offset 0x22.
#
size = unpack("<L", data[:4])[0]
size -= 0x36 # Subtract size of bitmap header.
size += 0x0C # Add size of BIFF header.
data = data[4:]
# Remove bitmap data: reserved, offset, header length.
data = data[12:]
# Read and remove the bitmap width and height. Verify the sizes.
width, height = unpack("<LL", data[:8])
data = data[8:]
if (width > 0xFFFF):
raise Exception("bitmap: largest image width supported is 65k.")
if (height > 0xFFFF):
raise Exception("bitmap: largest image height supported is 65k.")
# Read and remove the bitmap planes and bpp data. Verify them.
planes, bitcount = unpack("<HH", data[:4])
data = data[4:]
if (bitcount != 24):
raise Exception("bitmap isn't a 24bit true color bitmap.")
if (planes != 1):
raise Exception("bitmap: only 1 plane supported in bitmap image.")
# Read and remove the bitmap compression. Verify compression.
compression = unpack("<L", data[:4])[0]
data = data[4:]
if (compression != 0):
raise Exception("bitmap: compression not supported in bitmap image.")
# Remove bitmap data: data size, hres, vres, colours, imp. colours.
data = data[20:]
# Add the BITMAPCOREHEADER data
header = pack("<LHHHH", 0x000c, width, height, 0x01, 0x18)
data = header + data
return (width, height, size, data)
class ImDataBmpRecord(BiffRecord):
_REC_ID = 0x007F
def __init__(self, filename):
"""Insert a 24bit bitmap image in a worksheet. The main record required is
IMDATA but it must be proceeded by a OBJ record to define its position.
"""
BiffRecord.__init__(self)
self.width, self.height, self.size, data = _process_bitmap(filename)
# Write the IMDATA record to store the bitmap data
cf = 0x09
env = 0x01
lcb = self.size
self._rec_data = pack("<HHL", cf, env, lcb) + data